QMR1/QMR2 ## **Features** - Miniature SIL Package - Unique QM (Quasi AM/FM) Design - Data Rates Up To 10kbits/s - Optimal Range 200m (433.92MHz Versions) - 433.92 / 868 MHz Versions - Very High Sensitivity (-112 dBm) - Very Low Current Consumption - Single 5v Supply - Signal Strength Output (RSSI) - High Selectivity (20KHz B/W Possible on QMR1) - Immune To FM Threshold Effect # **Applications** - Vehicle Alarm Systems - Remote Gate Controls - Garage Door Openers - Domestic And Commercial Security ## **Compatible Transmitter Modules** - QFMT1-XXX (see data sheet DS301) - QAMT2-XXX (see data sheet QAMT2) # **General Description** These miniature UHF receiver radio modules enable the implementation of a simple telemetry link at data rates of up to 10Kbit/s when used with one of the compatible transmitter modules Available for operation at 433.92 and 868 MHz these modules are able to receive at distances of up to 200Mtrs. The QMR1 / QMR2 modules will suit one-to-one and multi-node wireless links in applications including building and car security, remote industrial process monitoring and computer networking. Because of its small size and low power requirements, the module is ideal for use in portable battery powered wireless applications # QMR1/QMR2 # **Absolute Maximum Ratings: Receiver** Operating temperature: -10°C to +55°C Storage temperature: -40°C to +100°C Supply Voltage 5V Data input 10V RF Input $\pm 50 \text{V} @ < 10 \text{MHz}, +20 \text{dBm} @ > 10 \text{MHz}$ # **Electrical Characteristics: Receiver** | | pin | min. | typ. | Max. | Units | Notes | |-------------------------------|-----|------|-------|-------|------------|-------| | DC LEVELS | | | | | | | | Supply voltage | | 4.5 | 5 | 5.5 | V | | | Supply current | | | 2 | | mA | QMR1 | | | | | 4.8 | | mA | QMR2 | | Supply ripple | | - | - | 10 | mV_{P-P} | | | Data output high | | | 4.0 | | V | | | Data output low | | | | 0.5 | V | | | RF | | | | | | | | RF sensitivity | | | -110 | | dBm | QMR1 | | • | | | -112 | | dBm | QMR2 | | IF Bandwidth | | | 600 | | KHz | QMR1 | | | | | 230 | | KHz | QMR2 | | Initial frequency accuracy | | | ±50 | | KHz | QMR1 | | | | | +/-30 | | KHz | QMR2 | | Max R.F. input | | | 20 | | dBm | QMR1 | | | | | 20 | | dBm | QMR2 | | E.M.C. | | | | | | | | Spurious responses upto 1GHz | | | <60 | | dB | | | LO leakage, conducted | | | <60 | | dBm | | | LO leakage, radiated | | | <60 | | dBm | | | DYNAMIC TIMING | | | | | | | | Power up with signal present | | | | | | | | Power up to stable data | | | 10 | | mS | | | Signal applied with supply on | | | | | | | | Signal to stable data | | | 6 | | mS | | | Time between data transitions | | | 10 | | mS | | | Mark:space ratio | | | 50 | | % | | | Bit rate | | 20 | | 10000 | bps | QMR1 | | | | 200 | | 4000 | bps | QMR2 | ## **QMR1 Details** Figure 1: QMR1 Receiver ## **Pin Description:** #### Vcc (PIN 1) +Ve supply pin. Operation from a 5V supply able to source 2mA at less than $10mV_{P-P}$ ripple. #### GND (PIN 2) Supply ground connection, preferably connected to a solid ground plane. #### RF IN (PIN 3) 50Ω RF input from antenna, connect using shortest possible route. Capacitively isolated from internal circuit. #### **UNCONNECTED (PINS 4 & 5)** Extra SIL pins for additional mechanical retention. #### RSSI (PIN 6) Test output providing a voltage that is proportional to the level of the RF input on pin 3. #### DATA OUT (PIN 7) CMOS compatible output. This may be used to drive external decoders. Note: sink/source capability is limited to $20\mu A$. #### **General Information** Figure 2: Receiver Block Diagram The receiver module is a quasi AM /FM (QM) superhet receiver capable of handling data rates of up to 10Kbits/s. With an on board data buffer and phase locked loop a -110 dBm sensitivity is achieved. Utilising the quasi AM/FM modulation technique and the latest phase locked loop receiver technology with one of the compatible transmitter modules will yield a highly efficient wireless link. **Note:** Because of the way Quasi Modulation operates the QMR1 and the QFMT1 will not work reliably in close proximity to each other. #### **RSSI Values** | RF Level (dBm) pin 3 | RSSI (volts) pin 6 | |----------------------|--------------------| | -110 | 2.12 | | -100 | 2.21 | | -90 | 2.31 | | -80 | 2.46 | | -70 | 2.62 | | -60 | 2.80 | | -50 | 2.91 | | -40 | 2.97 | | -30 | 3.00 | | -20 | 3.03 | | -10 | 2.88 | ## **QMR2 Details** Figure 3 QMR2 Receiver ## **Pin Description:** #### RF IN (pin 1) 50 ohm RF input from antenna, connect using shortest possible route. This input is isolated from the internal circuit using the air gap of the front end SAW RF filter. #### RF GND (pin 2) Supply ground connection. Preferably connected to a solid ground plane. ## RSSI (pin 3) This is a dc output voltage that is proportional to the RF signal strength applied to pin 1. #### **GND (pin 4)** Connected to power supply ground. #### Vcc (pin 5) +Ve supply pin. Operation from a 5V supply able to source 6mA at less than Vp-p ripple. #### AF (pin 6) Audio frequency output. Note Source current is limited to 40 microA. In most applications a buffer may be required to interface to this pin. #### DATA OUT (pin 7) CMOS compatible output. This may be used to drive external decoders. #### **General Information** Figure 4: Receiver Block Diagram The QMR2 receiver module is a FM single conversion superhet receiver capable of handling data rates of up to 10Kbits/s. With an on board data buffer, phase locked loop and a high quality front end RF stage, a -107dBm sensitivity is achieved. Utilising the latest phase locked loop receiver technology with one of the compatible transmitter modules will yield a highly efficient wireless link. #### **RSSI Values** | RF Level (dBm) pin 3 | RSSI (volts) pin 6 | |----------------------|--------------------| | -110 | 1.16 | | -100 | 1.34 | | -90 | 1.59 | | -80 | 1.78 | | -70 | 1.81 | | -60 | 1.81 | | -50 | 2.17 | | -40 | 2.45 | | -30 | 2.52 | | -20 | 2.52 | | -10 | 2 52 | ## **Application Information** ## **Antenna Design** The design and positioning of the antenna is as crucial as the module performance itself in achieving a good wireless system range. The following will assist the designer in maximising system performance. The antenna should be kept as far away from sources of electrical interference as physically possible. If necessary, additional power line decoupling capacitors should be placed close to the module. The antenna 'hot end' should be kept clear of any objects, especially any metal as this can severely restrict the efficiency of the antenna to receive power. Any earth planes restricting the radiation path to the antenna will also have the same effect. Best range is achieved with either a straight piece of wire, rod or PCB track @ ¼ wavelength (15.5cm @ 433.92MHz). Further range may be achieved if the ¼ wave antenna is placed perpendicular in the middle of a solid earth plane measuring at least 16cm radius. In this case, the antenna should be connected to the module via some 50 ohm characteristic impedance coax # Helical Antenna RF 34mm @ 433MHz 17 turns equally spaced $\emptyset = 5 \text{mm}$ (inside) Figure 5: Antenna Configurations To Be Used With The Modules ## **Receiver Data Output Buffer** The QMR1 receiver has a push-pull data output drive limited to 20uA. If drive problems are experienced, and sometimes they exhibit themselves in a poor system range, the following simple buffer stage should be incorporated between the module data output and the subsequent stage. This buffer is already present on the QMR2 receiver. Figure 6: Receiver Data Output Buffer # **Application Circuit** The application circuit shows how the QM receiver can easily be integrated into a system to form a wireless link. Figure 7: QM Receiver Application Circuits # **Mechanical Dimensions** Figure 8: QMR1 Receiver Figure 9: QMR2 Receiver # QMR1/QMR2 # **Ordering Information** | PART No | Description | |----------|----------------------| | QMR1-434 | SIL Receiver 434 MHz | | QMR1-868 | SIL Receiver 868 MHz | | QMR2-434 | SIL Receiver 434 MHz | Should you require further assistance please contact: R F Solutions Ltd., Unit 21, Cliffe Industrial Estate, South Street, Lewes, E. Sussex. BN8 6JL, England Tel: +44 (0)1273 898 000 Fax: +44 (0)1273 480 661 Email: sales@rfsolutions.co.uk http://www.rfsolutions.co.uk Information contained in this document is believed to be accurate, however no representation or warranty is given and no liability is assumed by R.F. Solutions Ltd. With respect to the accuracy of such information. Use of R.F. Solutions as critical components in life support systems is not authorised except with express written approval from R.F. Solutions Ltd.