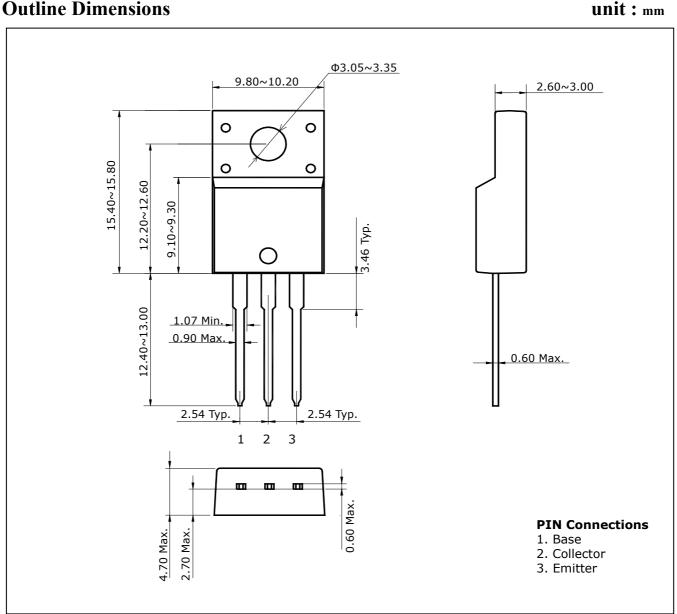


STD13005F

NPN Silicon Power Transistor


Features

- High speed switching
- VCEO(sus)=400V
- Suitable for Switching Regulator and Motor Control

Ordering Information

Type NO.	Marking	Package Code		
STD13005F	STD13005	TO-220F-3L		

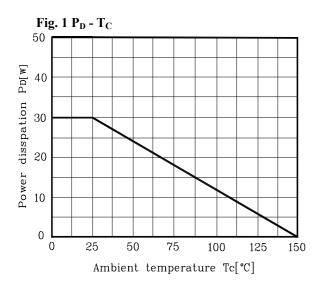
Outline Dimensions

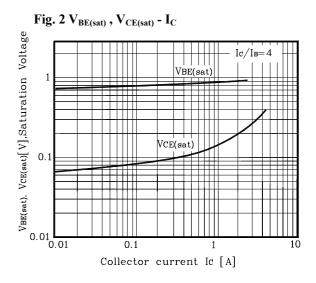
KST-H019-000

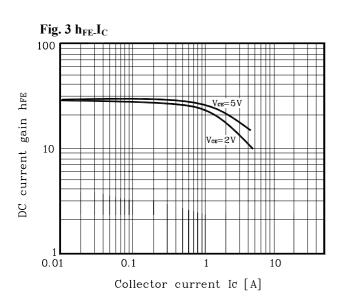
Absolute maximum ratings

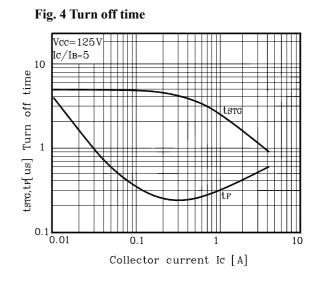
(Tc=25℃)

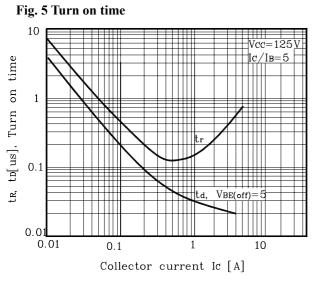
Characteristic	Symbol	Ratings	Unit
Collector-Base voltage	V_{CBO}	700	V
Collector-Emitter voltage	V_{CEO}	400	V
Emitter-base voltage	V_{EBO}	9	V
Collector current (DC)	I_{C}	4	Α
Collector current (Pulse)	I_{CM}	8	Α
Base current (DC)	I_{B}	2	А
Base current (Pulse)	${ m I}_{\sf BM}$	4	Α
Total Power dissipation (Tc=25℃)	P_{D}	30	W
Junction temperature	T _j	150	°C
Storage temperature	T_{stg}	-55~150	°C

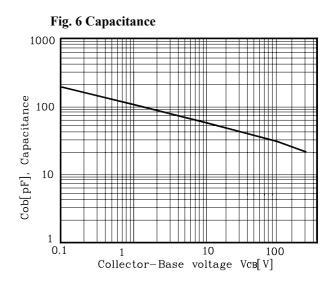

Electrical Characteristics

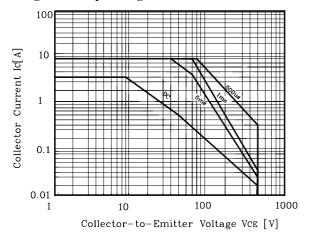

(Tc=25°C)


Clarent and a sinting	C1- 1	T4 C 1:4:	N. #*	TE	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	TT •4
Characteristic	Symbol	Test Condition	Min.	Typ.	Max.	Unit
Collector-Emitter sustaining voltage	$V_{CE(sus)}$	$I_C=10$ mA, $I_B=0$	400	-	-	V
Collector cut-off current	I _{CEV}	V _{CEV} =Rated Value V _{BE(off)} =1.5V	-	-	1	mA
Emitter cut-off current	I_{EBO}	$V_{EB}=9V$, $I_{C}=0$	-	-	1	mA
DC Current gain	h _{FE} *	I _C =1A, V _{CE} =5V	10	-	60	
		$I_C=2A$, $V_{CE}=5V$	8	-	40	
	V _{CE(sat)} *	I _C =1A, I _B =0.2A	-	-	0.5	V
Collector-Emitter saturation voltage		I _C =2A, I _B =0.5A	-	-	0.6	
		I _C =4A, I _B =1A	-	-	1	
Base-Emitter saturation voltage	V _{BE(sat)} *	$I_{C}=1A, I_{B}=0.2A$	-	-	1.2	· v
		I _C =2A, I _B =0.5A	-	-	1.6	
Transition frequency	f _T	V _{CB} =10V, I _C =0.5A, f=1MHz	4	-	-	MHz
Output capacitance	C _{ob}	V _{CB} =10V, I _E =0, f=0.1MHz	-	65	-	pF
Turn on Time	t _{on}	$V_{CC}=125V, I_{C}=2A, R_{L}=62.5\Omega$ $I_{B1}=-I_{B2}=0.4A$	-	-	0.8	
Storage Time	t _{STG}		-	-	4	μs
Fall Time	t _F		-	-	0.9	


^{*} Pulse test: PW \leq 300 μs , Duty cycle \leq 2% Pulse


Electrical Characteristic Curves





STD13005F

Fig. 7 Safe Operating Area

The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.).

Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp..

Specifications mentioned in this publication are subject to change without notice.