

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION. INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the LLS A

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-62077-625-4

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Table of Contents

Preface		7
1101000 1111	Introduction	
	Document Layout	
	Conventions Used in this Guide	
	Recommended Reading	
	The Microchip Web Site	
	Customer Support	
	Document Revision History	
Chapter 1.	Product Overview	
•	1.1 Introduction	11
	1.2 Evaluation System Features	11
	1.2.1 Board Component Location	12
	1.3 What the UCS1001-3 Evaluation Board Kit Contains	12
Chapter 2.	Installation and Operation	
-	2.1 Getting Started	13
	2.1.1 System Requirements	
	2.1.2 Evaluation Board Jumper Configuration	
	2.1.3 Configuration for Dedicated Charger Emulation (DCE) Mode	
	2.1.4 Configuration for BC1.2 CDP Mode	
	2.1.5 Configuration for BC1.2 DCP Mode	
	2.1.6 Configuration for BC1.2 SDP Mode	16
Chapter 3.	Hardware Overview	4-
	3.1 Introduction	
	3.1.1 Power Source	
	3.2 Stand-Alone Functionality	
	3.2.1 Charger Emulation Mode Configurations	
	3.2.2 Attach Detection and Power States	
	3.3 Fault Handling	
	3.4 Current Limiting	
	3.5 High-Speed USB Data Switch	17
Appendix A	A. Schematics and Layouts	
	A.1 Introduction	
	A.2 Board — Schematic	
	A.4 Board Top Silk and Bods	
	A.4 Board Top Silk and Copper	
	A.5 Board – Top Silk and Copper	22

Worldwide Sales and Service	2
Appendix B. Bill of Materials (BOM)	
A.10 Board – Bottom Silk	24
A.9 Board – Bottom Silk and Pads	24
A.8 Board – Bottom Silk and Copper	23
A.7 Board – Bottom Copper	23
A.6 Board – Top Copper	22

Object of Declaration: UCS1001-3 Evaluation Board User's Guide

EU Declaration of Conformity

This declaration of conformity is issued by the manufacturer.

The development/evaluation tool is designed to be used for research and development in a laboratory environment. This development/evaluation tool is not a Finished Appliance, nor is it intended for incorporation into Finished Appliances that are made commercially available as single functional units to end users under EU EMC Directive 2004/108/EC and as supported by the European Commission's Guide for the EMC Directive 2004/108/EC (8th February 2010).

This development/evaluation tool complies with EU RoHS2 Directive 2011/65/EU.

For information regarding the exclusive, limited warranties applicable to Microchip products, please see Microchip's standard terms and conditions of sale, which are printed on our sales documentation and available at www.microchip.com.

16-July - 2013 Date

Signed for and on behalf of Microchip Technology Inc. at Chandler, Arizona, USA

Derek Carlson

Derek Carlson

VP Development Tools

UCS1001-3 Evaluation Board User's Guide				
NOTES:				

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a "DS" number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is "DSXXXXXA", where "XXXXXX" is the document number and "A" is the revision level of the document.

For the most up-to-date information on development tools, see the MPLAB[®] IDE online help. Select the Help menu, and then Topics to open a list of available online help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the UCS1001-3. Items discussed in this chapter include:

- Document Layout
- · Conventions Used in this Guide
- Recommended Reading
- The Microchip Web Site
- Customer Support
- Document Revision History

DOCUMENT LAYOUT

This document describes how to use the UCS1001-3 as a development tool to emulate and debug firmware on a target board. The manual layout is as follows:

- Chapter 1. "Product Overview" Important information about the UCS1001-3 Evaluation Board.
- Chapter 2. "Installation and Operation" Includes instructions on installing and getting started with the UCS1001-3 Evaluation Board.
- Chapter 3. "Hardware Overview" Shows hardware details of the UCS1001-3 Evaluation Board.
- Appendix A. "Schematics and Layouts" Shows the schematic and layout diagrams for the UCS1001-3 Evaluation Board.
- Appendix B. "Bill of Materials (BOM)" Lists the parts used to build the UCS1001-3 Evaluation Board.

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description	Represents	Examples				
Arial font:	Arial font:					
Italic characters	Referenced books	MPLAB [®] IDE User's Guide				
	Emphasized text	is the only compiler				
Initial caps	A window	the Output window				
	A dialog	the Settings dialog				
	A menu selection	select Enable Programmer				
Quotes	A field name in a window or dialog	"Save project before build"				
Underlined, italic text with right angle bracket	A menu path	File>Save				
Bold characters	A dialog button	Click OK				
	A tab	Click the Power tab				
N'Rnnnn	A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.	4'b0010, 2'hF1				
Text in angle brackets < >	A key on the keyboard	Press <enter>, <f1></f1></enter>				
Courier New font:						
Plain Courier New	Sample source code	#define START				
	Filenames	autoexec.bat				
	File paths	c:\mcc18\h				
	Keywords	_asm, _endasm, static				
	Command-line options	-0pa+, -0pa-				
	Bit values	0, 1				
	Constants	0xff, 'A'				
Italic Courier New	A variable argument	file.o, where file can be any valid filename				
Square brackets []	Optional arguments	mcc18 [options] file [options]				
Curly brackets and pipe character: { }	Choice of mutually exclusive arguments; an OR selection	errorlevel {0 1}				
Ellipses	Replaces repeated text	<pre>var_name [, var_name]</pre>				
	Represents code supplied by user	<pre>void main (void) { }</pre>				

RECOMMENDED READING

This user's guide describes how to use UCS1001-3. Other useful documents are listed below. The following Microchip documents are available and recommended as supplemental reference resources.

- UCS1001-3 Data Sheet "USB Port Power Controller with Charger Emulation" (Revision 1.4 – 07-16-13)
- AN 24.20 "Using the UCS100x as a Single or Dual Mode Charger" (Revision 1.0)
- AN 25.16 "USB Charging Port ESD Protection Tips for UCS100x" (Revision 1.0)
- AN 26.0 "UCS1001 Current Limit Operation and Features" (Revision 1.1)

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

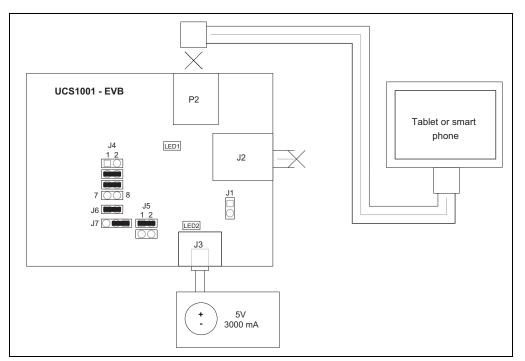
Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support.

DOCUMENT REVISION HISTORY

Revision A (November 2013)

· Initial Release of this Document.


0031001-	-3 Evaluat	ion Boar	a User s	Guide	
NOTES:					

Chapter 1. Product Overview

1.1 INTRODUCTION

The UCS1001-3 device is a Universal Serial Bus (USB) port power switch with charger emulation. All of the functions of the UCS1001-3 device can be tested and observed with the UCS1001-3 Evaluation Board. A block diagram of this evaluation board Charger Emulation Test Set Up is shown in Figure 1-1.

FIGURE 1-1: UCS1001-3 Evaluation Board – Charger Emulation Test Set Up Block Diagram.

1.2 EVALUATION SYSTEM FEATURES

The evaluation setup is comprised of the UCS1001-3 Evaluation Board and a downstream tablet or cell phone device, which allows the user to:

- Observe the Charger Emulation functionality
- Observe the BC1.2 Charging Downstream Port (CDP), Dedicated Charging Port (DCP) and Standard Downstream Port (SDP) functionality
- Observe the USB Pass-Through functionality

The hardware platform provides the following features to the user:

- Jumpers for modes of operation: Dedicated Charger Emulation (DCE), DCP, CDP and USB Pass-Through
- Jumper for Fault Handling: Latch upon fault, or Auto-recovery
- Jumper for Current Limiting of 2.5 or 0.5A
- Jumper for PWR_EN

1.2.1 Board Component Location

The evaluation board was designed for ease of use and user experimentation. Figure 1-2 below shows the top-printed circuit board 3D plot for the UCS1001-3 Evaluation Board.

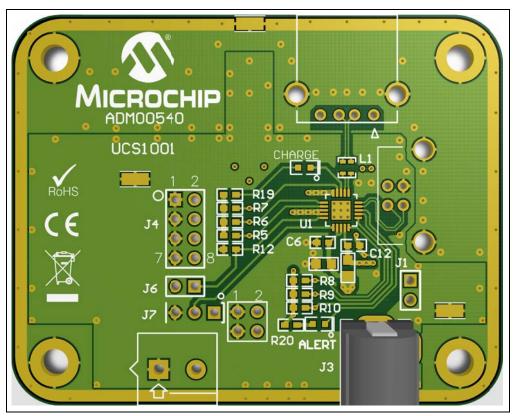


FIGURE 1-2: UCS1001-3 Evaluation Board – Top 3D View.

1.3 WHAT THE UCS1001-3 EVALUATION BOARD KIT CONTAINS

This UCS1001-3 Evaluation Board kit includes:

- UCS1001-3 Evaluation Board (ADM00540)
- Provided 20W, 5V wall power adapter
- Important Information Sheet

Chapter 2. Installation and Operation

2.1 GETTING STARTED

2.1.1 System Requirements

To use the UCS1001-3 Evaluation Board, the following are required:

- A 5V supply capable of 5V, 3.0A, or the wall transformer provided in the evaluation kit.
- Various downstream USB devices to charge, such as tablets and cell phones.
- A PC with an USB port to demonstrate CDP, SDP or USB Enumeration.

2.1.2 Evaluation Board Jumper Configuration

Table 2-1 describes each jumper setting used with this evaluation board. Refer to Figure 2-1 for the jumper location.

TABLE 2-1: UCS1001-3 EVB JUMPER DESCRIPTION

Jumper Designator	Pin Name	Function Description	
J4: 1-2	EM_EN	Jumper placed = Logic Low	
J4: 3-4	M1		
J4: 5-6	M2		
J4: 7-8	PWR_EN		
J6: 1-2	ILIM	Jumper placed = Logic High: 2.5A Current Limit Jumper open = 47K Pull Down: 0.5A Current Limit	
J7: 1-2	SEL	Jumper placed = Logic High: PWR_EN is Active High	
J7: 2-3		Jumper placed = Logic Low: PWR_EN is Active Low	
J5: 1-2	LATCH	Jumper placed = Logic Low: LATCH = 0, Auto-recovery enabled Jumper open = Logic High: LATCH = 1, Auto-recovery disabled	
J5: 3-4	S0	Jumper placed = Logic Low: S0 = 0, Active mode Jumper open = Logic High: S0 = 1, Detect mode	
J1: 1-2	USB Power	This jumper is to be left OPEN so that V_{DD} and V_{SOURCE} can be sourced from J3.	
J3	V _{DD} and V _S	Power supply for V _{DD} and V _{SOURCE}	
J8	Not Used	Not populated. Optional for Split Rail supply use.	
J2	USB-B	USB port for Host PC	
P2	USB-A	USB port for Downstream Device	

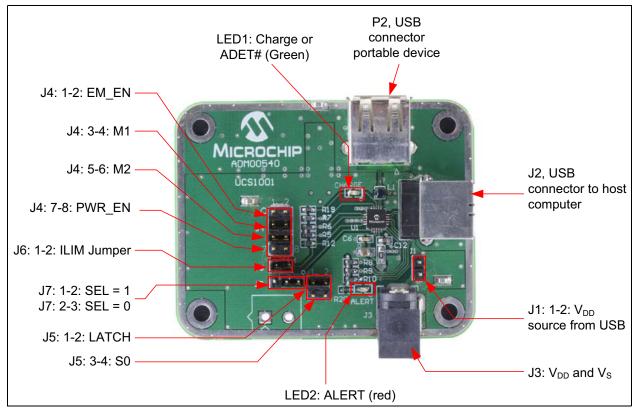


FIGURE 2-1: UCS1001-3 Evaluation Board Jumper Location.

2.1.3 Configuration for Dedicated Charger Emulation (DCE) Mode

The Dedicated Charger Emulation (DCE) mode configures the UCS1001-3 Evaluation Board to cycle through emulation profiles until I_{BUS_CHG} increases above the threshold of 156 mA. To configure the evaluation board for DCE:

- 1. Configure the jumper settings as shown in Table 2-2.
- 2. Apply 5V to J3.
- 3. The UCS1001-3 is set for the DETECT state and awaits a downstream device attachment.

Connect a tablet or a cell phone to the USB port P2. When a Charger Emulation Profile is applied and IBUS_CHG increases above 156 mA, LED1 will illuminate and charging will continue.

TABLE 2-2: UCS1001-3 EVALUATION BOARD JUMPER SETTINGS FOR DCE MODE

Jumper Designator	Pin Name	Function Description	
J4: 1-2	EM_EN	OPEN: Logic High	
J4: 3-4	M1	SHORT: Logic Low	
J4: 5-6	M2	SHORT: Logic Low	
J4: 7-8	PWR_EN	OPEN: Logic High	
J6: 1-2	ILIM	SHORT: Logic High – 2.5A Current Limit	
J7: 1-2	SEL	SHORT: Logic High – PWR_EN is Active High	
J5: 1-2	LATCH	SHORT: Logic Low – LATCH = 0, Auto-recovery enabled	
J5: 3-4	S0	OPEN: Logic High – S0 = 1, Detect mode	

2.1.4 Configuration for BC1.2 CDP mode

The Charging Downstream Port (CDP) mode configures the UCS1001-3 Evaluation Board to Handshake response, Enumerate the USB, and charge the downstream device. To configure the evaluation board for CDP:

- 1. Configure the jumper settings as shown in Table 2-3.
- 2. Apply 5V to J3.
- 3. Connect the EVB J2 (USB-B) to an Upstream PC USB port.
- 4. The UCS1001-3 is set for ACTIVE state and awaits a downstream device to provide Handshake stimulus on the DP pin upon attachment.

TABLE 2-3: UCS1001-3 EVALUATION BOARD JUMPER SETTINGS FOR CDP MODE

Jumper Designator	Pin Name	Function Description	
J4: 1-2	EM_EN	OPEN: Logic High	
J4: 3-4	M1	OPEN: Logic High	
J4: 5-6	M2	OPEN: Logic High	
J4: 7-8	PWR_EN	OPEN: Logic High	
J6: 1-2	ILIM	SHORT: Logic High – 2.5A Current Limit	
J7: 1-2	SEL	SHORT: Logic High – PWR_EN is Active High	
J5: 1-2	LATCH	SHORT: Logic Low – LATCH = 0, Auto-recovery enabled	
J5: 3-4	S0	SHORT: Logic Low – S0 = 0, Active mode	

Connect a BC1.2-compliant device to the USB Port P2. Once the handshaking response and stimulus are complete, the USB will Enumerate and the downstream device will charge.

2.1.5 Configuration for BC1.2 DCP mode

The Dedicated Charging Port (DCP) mode configures the UCS1001-3 Evaluation Board to Handshake respond and charge the downstream device. The DCP is similar to the Chinese Telecommunications Industry Standard YD/T 1591-2009. To configure the evaluation board for DCP:

- 1. Configure the jumper settings as shown in Table 2-4.
- 2. Apply 5V to J3.
- 3. The UCS1001-3 is set for ACTIVE state and awaits a downstream device to Handshake upon attachment.

TABLE 2-4: UCS1001-3 EVALUATION BOARD JUMPER SETTINGS FOR DCP MODE

Jumper Designator	Pin Name	Function Description	
J4: 1-2	EM_EN	OPEN: Logic High	
J4: 3-4	M1	SHORT: Logic Low	
J4: 5-6	M2	OPEN: Logic High	
J4: 7-8	PWR_EN	OPEN: Logic High	
J6: 1-2	ILIM	SHORT: Logic High – 2.5A Current Limit	
J7: 1-2	SEL	SHORT: Logic High – PWR_EN is Active High	
J5: 1-2	LATCH	SHORT: Logic Low – LATCH = 0, Auto-recovery enabled	
J5: 3-4	S0	SHORT: Logic Low – S0 = 0, Active mode	

2.1.6 Configuration for BC1.2 SDP mode

The Standard Downstream Port (SDP) mode configures the UCS1001-3 Evaluation Board to close the High-Speed Switch and allow the USB to Enumerate. To configure the evaluation board for SDP:

- 1. Configure the Jumper settings as shown in Table 2-5 below.
- 2. Apply 5V to J3.
- 3. Connect the evaluation board J2 (USB-B) to an upstream PC USB port.
- 4. The UCS1001-3 is set for ACTIVE state and awaits a downstream device to Enumerate the USB upon attachment.

TABLE 2-5: UCS1001-3 EVALUATION BOARD JUMPER SETTINGS FOR SDP MODE

Jumper Designator	Pin Name	Function Description	
J4: 1-2	EM_EN	SHORT: Logic Low	
J4: 3-4	M1	OPEN: Logic High	
J4: 5-6	M2	SHORT: Logic Low	
J4: 7-8	PWR_EN	OPEN: Logic High	
J6: 1-2	ILIM	SHORT: Logic High – 2.5A Current Limit	
J7: 1-2	SEL	SHORT: Logic High – PWR_EN is Active High	
J5: 1-2	LATCH	SHORT: Logic Low – LATCH = 0, Auto-recovery enabled	
J5: 3-4	S0	SHORT: Logic Low – S0 = 0, Active mode	

Chapter 3. Hardware Overview

3.1 INTRODUCTION

The UCS1001-3 Evaluation Board provides the means to demonstrate all of the UCS1001-3 functionality. The LEDs indicate the status information.

3.1.1 Power Source

The UCS1001-3 Evaluation Board requires 5V, 3.0A.

3.2 STAND-ALONE FUNCTIONALITY

The UCS1001-3 is intended for Stand-Alone USB Charger and BC1.2 CDP, DCP and SDP applications. See Table 2-1 for the description of jumpers.

LED1 indicates that the I_{BUS CHG} has exceeded the 156 mA threshold.

3.2.1 Charger Emulation Mode Configurations

The Charger Emulation mode of the UCS1001-3 is controlled by the pin states M1, M2 and EM_EN. These are the jumpers located on J4.

3.2.2 Attach Detection and Power States

The UCS1001-3 can use the Attach Detection functionality, or force the Active Mode Power State. This is controlled by jumper J5.

3.3 FAULT HANDLING

The UCS1001-3 has two modes of Fault Handling that can be configured for LATCH upon fault or Auto-recovery. Jumper J5 selects the Fault Handling. See Table 2-1 for the description of jumpers.

3.4 CURRENT LIMITING

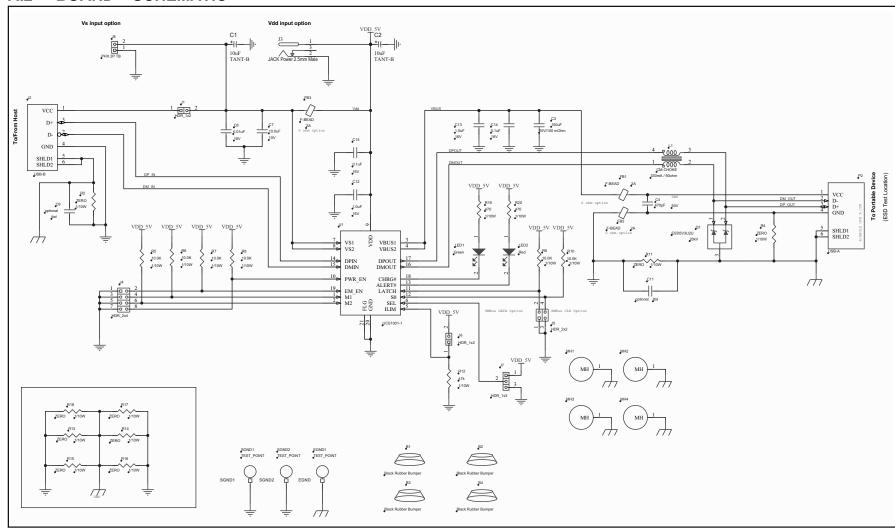
The UCS1001-3 is capable of eight selectable current limits (see UCS1001-3's data sheet for detailed information).

The UCS1001-3 Evaluation Board can be configured for MAX (2.5A) or MIN (0.5A) Current Limiting. Jumper J6 selects the MIN or MAX Current Limiting. See Table 2-1 for the description of jumpers.

3.5 HIGH SPEED USB DATA SWITCH

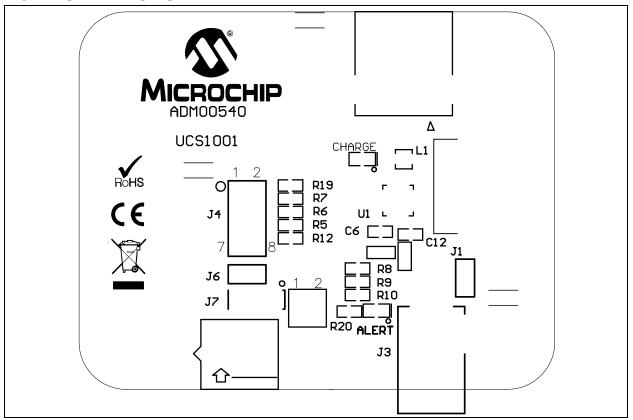
The UCS1001-3 contains a series USB 2.0-compliant high-speed switch between the DP and DM input and output pins. This switch is functional in CDP, SDP and Pass-through configurations.

UCS1001	UCS1001-3 Evaluation Board User's Guide				
NOTES:					

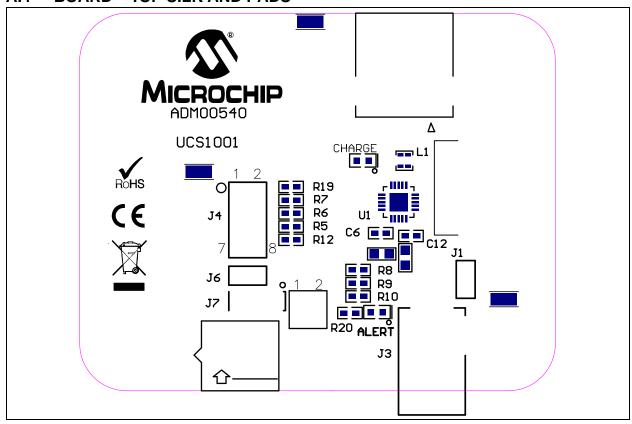

Appendix A. Schematics and Layouts

A.1 INTRODUCTION

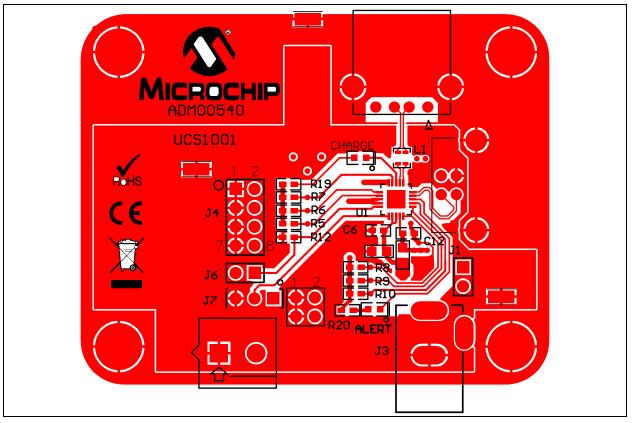
This appendix contains the following schematics and layouts for the UCS1001-3 Evaluation Board:

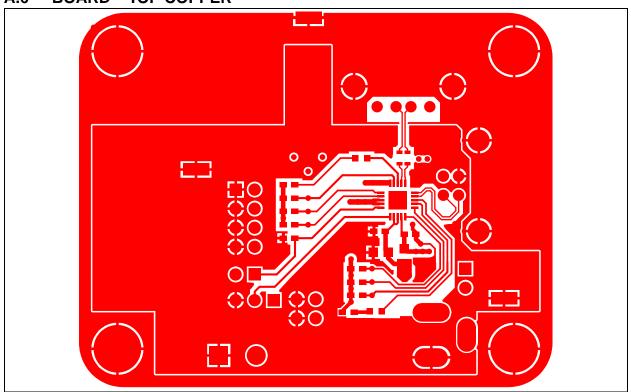

- Board Schematic
- Board Top Silk
- Board Top Silk and Pads
- Board Top Silk and Copper
- Board Top Copper
- Board Bottom Copper
- Board Bottom Silk and Copper
- Board Bottom Silk and Pads
- Board Bottom Silk

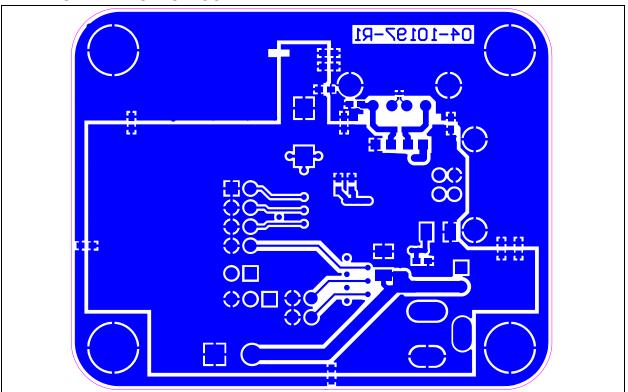
A.2 BOARD - SCHEMATIC

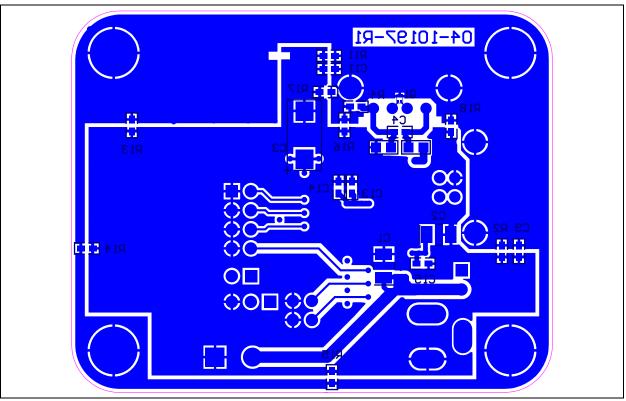


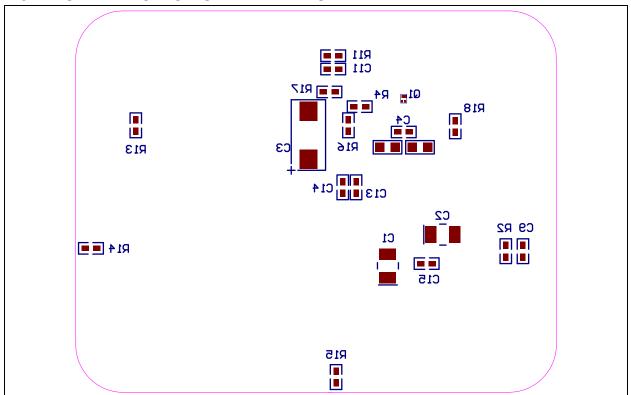
UCS1001-3 Evaluation Board User's Guide

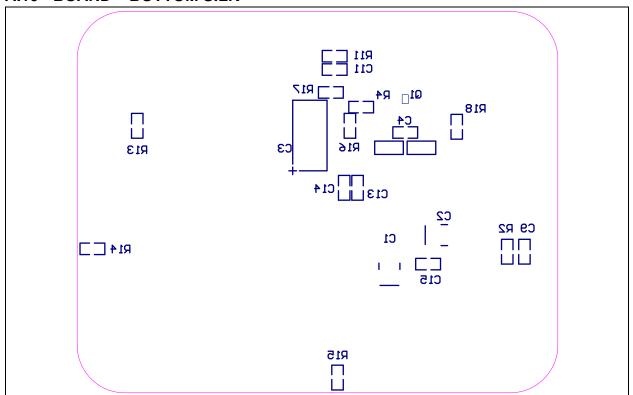

A.3 BOARD - TOP SILK


A.4 BOARD - TOP SILK AND PADS


A.5 BOARD - TOP SILK AND COPPER


A.6 BOARD - TOP COPPER


A.7 BOARD - BOTTOM COPPER


A.8 BOARD - BOTTOM SILK AND COPPER

A.9 BOARD - BOTTOM SILK AND PADS

A.10 BOARD - BOTTOM SILK

Appendix B. Bill of Materials (BOM)

TABLE B-1: BILL OF MATERIALS (BOM)

Qty.	Designator	Description	Manufacturer	Part Number
2	C1, C2	Cap. tant. 10 µF 20V 10% 1210	AVX Corporation	TAJB106K020RNJ
1	C3	Cap. tant. 150 µF 10V 10% 2917	AVX Corporation	TPSD157K010R0100
1	C4	Cap. ceramic 470 PF 50V 10% X7R 0603	Murata Electronics®	GRM188R71H471KA01D
1	C6	Cap. ceramic 10000 PF 50V 10% X7R 0603	Yageo Corporation	CC0603KRX7R9BB103
1	C7	Cap. ceramic 10 µF 10V 10% X7R 0805	Murata Electronics	GRM21BR71A106KE51
0	C9, C11	DO NOT POPULATE	_	_
2	C12, C13	Cap. ceramic 1 µF 16V 10% X5R 0603	Yageo Corporation	CC0603KRX5R7BB105
2	C14, C15	Cap. ceramic 0.1 µF 16V 10% X7R 0603	Yageo Corporation	CC0603KRX7R7BB104
	EGND1, SGND1, SGND2	PC test point miniature SMT	Keystone Electronics Corp.	5015
	FB1, FB2, FB3	Res. 0.0 OHM 1/8W jump. 0805 SMD	Panasonic® - ECG	ERJ-6GEY0R00V
2	J1, J6	Conn. header 2 pos100 vert. tin	FCI	77311-118-02LF
1	J2	Conn. USB recept. R/A type B 4 pos.	TE Connectivity, Ltd.	292304-1
1	J3	Conn. power jack male 2.5 MM clsd.	CUI Inc.	PJ-002B
1	J4	Conn. header 8 pos. 2 x 4 .100 str. 30 gold	FCI	68602-108HLF
1	J5	Conn. header 4 pos100" dual gold	FCI	68602-204HLF
1	J7	Conn. header 3 pos100 vert. tin	Molex [®]	0022284030
1	J8	Conn. term. block 2 pos. 5 MM PCB	Phoenix Contact GmbH & Co.	1729018
	Jumper shunts	Shunt LP w/handle 2 pos. 30 gold	TE Connectivity, Ltd.	881545-2
1	L1	Choke common mode 90 OHM 0805	Murata Electronics	DLW21HN900SQ2L
1	LED1	LED pure green 0603 SMD	Stanley Electric Co., Ltd.	BG1111C-TR
1	LED2	LED red clear 0603 SMD	Lite-On [®] Technology Corp.	LTST-C190CKT
1	P2	Conn. rcpt. USB type A R/A PCB	FCI	87520-0010BLF
0	PCB	Printed Circuit Board - UCS1001-3 Evaluation Board	_	104-00540
1	Q1	Diode ESD array 5.3V TSLP-3-7	Infineon Technologies AG	ESD5V3U2U-03LRH E6327
	R2, R11, R13, R14, R15, R16, R17, R18	Res. 0.0 ohm 1/10 W jump. 0603 SMD	Yageo Corporation	RC0603JR-070RL
1	R4	Res. 0.0 ohm 1/10W jump. 0603 SMD	Panasonic - ECG	ERJ-3GEY0R00V

Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.

TABLE B-1: BILL OF MATERIALS (BOM) (CONTINUED)

Qty.	Designator	Description	Manufacturer	Part Number
6	R5, R6, R7, R8, R9, R10	Res. 10.0K ohm 1/10W 1% 0603 SMD	Yageo Corporation	RC0603FR-0710KL
1	R12	Res. 47K ohm 1/10W 1% 0603	Stackpole Electronics, Inc.	RMCF0603FT47K0
2	R19, R20	Res. 470 ohm 1/10W 5% 0603 SMD	Yageo Corporation	RC0603JR-07470RL
1	U1	UCS1001-3 – USB Port Power Controller with Charger Emulation, 20LD QFN	Microchip Technology Inc.	UCS1001-3-BP

Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.

TABLE B-2: BILL OF MATERIALS – PARTS ADDED TO THE PACKAGE

Qty.	Designator	Description	Manufacturer	Part Number
4	B1, B2, B3, B4	Bumpon cylindrical .312 x .210 blk.	3M	SJ61A11
1	5V transformer	Adapter wall R-series 20W 5V	Phihong USA Inc.	PSAA20R-050
1	AC plug	Adapter wall R-series clip US	Phihong USA Inc.	RPA

Bill of Materials (BOM)

NOTES:			

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support
Web Address:

www.microchip.com
Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi. MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323

Fax: 317-773-5453

Los Angeles Mission Viejo, CA

Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong

Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000

Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588

Fax: 86-23-8980-9500 China - Hangzhou

Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470
China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631

Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857

Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399

Fax: 31-416-690340

Poland - Warsaw

Tel: 48-22-3325737 Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

10/28/13

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip: ADM00540